OptiMOS™ 5 Series, Single IGBTs

Results:
3
Manufacturer
Series
Input Capacitance (Ciss) (Max) @ Vds
Gate Charge (Qg) (Max) @ Vgs
Rds On (Max) @ Id, Vgs
Supplier Device Package
Vgs(th) (Max) @ Id
Drain to Source Voltage (Vdss)
Power Dissipation (Max)
Package / Case
Current - Continuous Drain (Id) @ 25°C
Drive Voltage (Max Rds On, Min Rds On)
Operating Temperature
FET Feature
FET Type
Grade
Mounting Type
Qualification
Technology
Vgs (Max)
Results remaining3
Applied Filters:
OptiMOS™ 5
Select
ImageProduct DetailPriceAvailabilityECAD ModelMounting TypeOperating TemperatureFET TypeGradeTechnologyFET FeatureSeriesDrain to Source Voltage (Vdss)Drive Voltage (Max Rds On, Min Rds On)Gate Charge (Qg) (Max) @ VgsVgs (Max)Input Capacitance (Ciss) (Max) @ VdsQualificationPackage / CaseCurrent - Continuous Drain (Id) @ 25°CRds On (Max) @ Id, VgsVgs(th) (Max) @ IdSupplier Device PackagePower Dissipation (Max)
IQD063N15NM5CGATMA1
Contact us
Quantity
Contact us
PCB Symbol, Footprint & 3D Model
Surface Mount
-55°C ~ 150°C (TJ)
N-Channel
-
MOSFET (Metal Oxide)
-
OptiMOS™ 5
150 V
0V, 10V
60 nC @ 10 V
±20V
4700 pF @ 75 V
-
9-PowerTDFN
14.1A (Ta), 148A (Tc)
6.32mOhm @ 50A, 10V
4.6V @ 159µA
PG-TTFN-9-U02
2.5W (Ta), 278W (Tc)
IPT009N06NM5ATMA1
Contact us
Quantity
Contact us
PCB Symbol, Footprint & 3D Model
Surface Mount
-55°C ~ 175°C (TJ)
N-Channel
-
MOSFET (Metal Oxide)
-
OptiMOS™ 5
60 V
6V, 10V
257 nC @ 10 V
±20V
16000 pF @ 30 V
-
8-PowerSFN
48A (Ta), 427A (Tc)
0.9mOhm @ 150A, 10V
3.3V @ 220µA
PG-HSOF-8
3.8W (Ta), 300W (Tc)
ISC0604NLSATMA1
Contact us
Quantity
Contact us
PCB Symbol, Footprint & 3D Model
Surface Mount
-55°C ~ 150°C (TJ)
N-Channel
-
MOSFET (Metal Oxide)
-
OptiMOS™ 5
80 V
4.5V, 10V
78 nC @ 10 V
±20V
6800 pF @ 40 V
-
8-PowerTDFN
22A (Ta), 166A (Tc)
2.8mOhm @ 50A, 10V
2.3V @ 103µA
PG-TDSON-8
2.5W (Ta), 139W (Tc)

About  Single IGBTs

Single Insulated-Gate Bipolar Transistors (IGBTs) are sophisticated semiconductor devices composed of multiple layers and equipped with three terminals. These devices are specifically designed to handle high currents and offer rapid switching capabilities. They are highly valued in a wide range of applications. The performance and characteristics of single IGBTs are defined by several key parameters. These parameters include the device type, collector-emitter breakdown voltage, collector current rating, pulsed collector current rating, VCE(ON), switching energy, and gate charge. The device type refers to the specific model or variant of the IGBT. Different models may possess distinct features and characteristics tailored to meet the requirements of different applications. The collector-emitter breakdown voltage represents the maximum voltage that the device can withstand across its collector and emitter terminals without experiencing a breakdown or failure. The collector current rating indicates the maximum continuous current that the IGBT can handle while maintaining proper functionality. The pulsed collector current rating specifies the maximum current that the IGBT can endure for short durations, typically in pulsed or transient conditions. VCE(ON) signifies the voltage drop across the collector-emitter junction when the IGBT is fully turned on and conducting current. This parameter is crucial for power loss calculations and efficiency analysis. Switching energy refers to the amount of energy dissipated during the switching process of the IGBT. Minimizing switching energy is vital for reducing power losses and enhancing overall efficiency. Lastly, gate charge denotes the amount of charge required to turn the IGBT on or off. Gate charge influences the switching speed and control characteristics of the device. By considering these parameters, engineers and designers can carefully select the most suitable single IGBT that aligns with the specific requirements of their application, ensuring optimal performance and reliability.