Military, MIL-PRF-19500/290 Series, Single Bipolar Transistors

Results:
10
Manufacturer
Series
Current - Collector (Ic) (Max)
Supplier Device Package
Package / Case
Power - Max
DC Current Gain (hFE) (Min) @ Ic, Vce
Operating Temperature
Frequency - Transition
Vce Saturation (Max) @ Ib, Ic
Grade
Mounting Type
Voltage - Collector Emitter Breakdown (Max)
Qualification
Transistor Type
Current - Collector Cutoff (Max)
Results remaining10
Applied Filters:
Military, MIL-PRF-19500/290
Select
ImageProduct DetailPriceAvailabilityECAD ModelMounting TypeOperating TemperaturePackage / CaseVoltage - Collector Emitter Breakdown (Max)GradeSeriesTransistor TypeCurrent - Collector (Ic) (Max)Vce Saturation (Max) @ Ib, IcCurrent - Collector Cutoff (Max)DC Current Gain (hFE) (Min) @ Ic, VcePower - MaxFrequency - TransitionSupplier Device PackageQualification
JANS2N2904AL
Contact us
Quantity
Contact us
PCB Symbol, Footprint & 3D Model
Through Hole
-65°C ~ 200°C (TJ)
TO-205AA, TO-5-3 Metal Can
60 V
-
Military, MIL-PRF-19500/290
PNP
600 mA
1.6V @ 50mA, 500mA
1µA
40 @ 150mA, 10V
800 mW
-
TO-5AA
-
JANS2N2904A
TRANS PNP 60V 1UA TO39
Contact us
Quantity
Contact us
PCB Symbol, Footprint & 3D Model
Through Hole
-65°C ~ 200°C (TJ)
TO-205AD, TO-39-3 Metal Can
60 V
-
Military, MIL-PRF-19500/290
PNP
600 mA
1.6V @ 50mA, 500mA
1µA
40 @ 150mA, 10V
800 mW
-
TO-39 (TO-205AD)
-
JANS2N2905AL
Contact us
Quantity
Contact us
PCB Symbol, Footprint & 3D Model
Through Hole
-65°C ~ 200°C (TJ)
TO-205AA, TO-5-3 Metal Can
60 V
-
Military, MIL-PRF-19500/290
PNP
600 mA
1.6V @ 50mA, 500mA
1µA
100 @ 150mA, 10V
800 mW
-
TO-5AA
-
JANTXV2N2905
TRANS PNP 60V 1UA TO39
Contact us
Quantity
Contact us
PCB Symbol, Footprint & 3D Model
Through Hole
-65°C ~ 200°C (TJ)
TO-205AD, TO-39-3 Metal Can
60 V
-
Military, MIL-PRF-19500/290
PNP
600 mA
1.6V @ 50mA, 500mA
1µA
100 @ 150mA, 10V
800 mW
-
TO-39 (TO-205AD)
-
JANSR2N2905A
TRANS PNP 60V 1UA TO39
Contact us
Quantity
Contact us
PCB Symbol, Footprint & 3D Model
Through Hole
-65°C ~ 200°C (TJ)
TO-205AD, TO-39-3 Metal Can
60 V
-
Military, MIL-PRF-19500/290
PNP
600 mA
1.6V @ 50mA, 500mA
1µA
100 @ 150mA, 10V
800 mW
-
TO-39 (TO-205AD)
-
JANSR2N2905AL
Contact us
Quantity
Contact us
PCB Symbol, Footprint & 3D Model
Through Hole
-65°C ~ 200°C (TJ)
TO-205AA, TO-5-3 Metal Can
60 V
-
Military, MIL-PRF-19500/290
PNP
600 mA
1.6V @ 50mA, 500mA
1µA
100 @ 150mA, 10V
600 mW
-
TO-5AA
-
JANS2N2904
TRANS PNP 60V 1UA TO39
Contact us
Quantity
Contact us
PCB Symbol, Footprint & 3D Model
Through Hole
-65°C ~ 200°C (TJ)
TO-205AD, TO-39-3 Metal Can
60 V
-
Military, MIL-PRF-19500/290
PNP
600 µA
1.6V @ 50mA, 500mA
1µA
40 @ 150mA, 10V
800 mW
-
TO-39 (TO-205AD)
-
JANS2N2905
TRANS PNP 60V 1UA TO39
Contact us
Quantity
Contact us
PCB Symbol, Footprint & 3D Model
Through Hole
-65°C ~ 200°C (TJ)
TO-205AD, TO-39-3 Metal Can
60 V
-
Military, MIL-PRF-19500/290
PNP
600 mA
1.6V @ 50mA, 500mA
1µA
100 @ 150mA, 10V
800 mW
-
TO-39 (TO-205AD)
-
JANSR2N2904A
Contact us
Quantity
Contact us
PCB Symbol, Footprint & 3D Model
Through Hole
-65°C ~ 200°C (TJ)
TO-205AD, TO-39-3 Metal Can
60 V
-
Military, MIL-PRF-19500/290
PNP
600 mA
1.6V @ 50mA, 500mA
1µA
40 @ 150mA, 10V
600 mW
-
TO-39 (TO-205AD)
-
JANSR2N2904AL
Contact us
Quantity
Contact us
PCB Symbol, Footprint & 3D Model
Through Hole
-65°C ~ 200°C (TJ)
TO-205AA, TO-5-3 Metal Can
60 V
-
Military, MIL-PRF-19500/290
PNP
600 mA
1.6V @ 50mA, 500mA
1µA
40 @ 150mA, 10V
600 mW
-
TO-5AA
-

About  Single Bipolar Transistors

Discrete bipolar junction transistors (BJTs) are frequently used in constructing analog signal amplifiers for applications such as audio and radio. As one of the earliest semiconductor devices to be mass-produced, their characteristics are not ideal for high frequency switching and high current or voltage operation, but they remain a popular choice for applications that require minimal noise and distortion when reproducing analog signals. The structure of a BJT consists of three doped semiconductor regions: the emitter, base, and collector. The base is sandwiched between the emitter and the collector, forming two p-n junctions. The base region is thin and lightly doped compared to the emitter and collector regions, to allow for control of the device's conductivity. BJTs can be characterized by their gain, bandwidth, collector-emitter saturation voltage, and breakdown voltage. The gain is the ratio of the output current to the input current, while bandwidth refers to the range of frequencies within which the transistor operates effectively. Collector-emitter saturation voltage is the voltage drop across the collector-emitter terminals when the transistor is switched on, and breakdown voltage is the maximum voltage that the transistor can withstand without suffering damage. Compared to other device types, BJTs have less favorable characteristics for high frequency switching and high current/voltage operation. However, they are still commonly used in applications requiring analog signal amplification with minimal noise and distortion. This is due to the fact that they have relatively low input and output impedance, making them ideal for use in circuits that require matching or buffering. In summary, discrete bipolar junction transistors (BJTs) are widely used in constructing analog signal amplifiers for applications such as audio and radio. While their characteristics may not be optimal for high frequency or high current/voltage applications, they remain a popular choice for applications requiring minimal noise and distortion when reproducing analog signals.