Dialight

Dialight

Dialight is a renowned company that specializes in providing innovative LED lighting solutions for industrial and hazardous environments. With a focus on energy efficiency and durability, Dialight offers a wide range of high-quality LED fixtures, retrofit kits, and bulbs designed to meet the specific lighting requirements of various industries including manufacturing, oil and gas, transportation, and mining. The company's products are known for their long lifespan, low maintenance requirements, and resistance to harsh conditions such as extreme temperatures, vibrations, and corrosive chemicals. By utilizing cutting-edge LED technology, Dialight helps businesses reduce energy consumption, enhance safety, and improve productivity. With a global presence and a commitment to sustainability, Dialight continues to lead the way in providing reliable and energy-efficient lighting solutions for industrial applications worldwide.

Lenses

Results:
51
Series
Lens Style
Color
Material
Type
Lens Transparency
For Use With/Related Manufacturer
Mounting Type
Number of LEDs
Lens Size
Viewing Angle
Optical Pattern
Results remaining51
Applied Filters:
Dialight
Select
ImageProduct DetailPriceAvailabilityECAD Model
019-0532-303
Lamp Lenses LARGE PANEL IND
Contact us
Quantity
Contact us
PCB Symbol, Footprint & 3D Model
132-0991
Lamp Lenses MIN PANEL IND
Contact us
Quantity
Contact us
PCB Symbol, Footprint & 3D Model
081-0431-100
Lamp Lenses MIN PANEL IND
Contact us
Quantity
Contact us
PCB Symbol, Footprint & 3D Model
081-0434-100
Lamp Lenses MIN PANEL IND
Contact us
Quantity
Contact us
PCB Symbol, Footprint & 3D Model
026-1111-203
LENS RED PANEL MOUNT THREADED
Contact us
Quantity
Contact us
PCB Symbol, Footprint & 3D Model
239-0333-500
Lamp Lenses SUB MIN PANEL IND
Contact us
Quantity
Contact us
PCB Symbol, Footprint & 3D Model
125-1111-403
Lamp Lenses MIN OIL TIGHT PANEL
Contact us
Quantity
Contact us
PCB Symbol, Footprint & 3D Model
095-3133-003
LENS YELLOW PANEL MOUNT THREADED
Contact us
Quantity
Contact us
PCB Symbol, Footprint & 3D Model
095-5710-09-201
Lamp Holders & Accessories MIN P
Contact us
Quantity
Contact us
PCB Symbol, Footprint & 3D Model
041-1333-300
Lamp Lenses LARGE PANEL IND
Contact us
Quantity
Contact us
PCB Symbol, Footprint & 3D Model
085131001201
MIN. PANEL IND.
Contact us
Quantity
Contact us
PCB Symbol, Footprint & 3D Model
222-0133-303
Lamp Lenses MIN PANEL IND
Contact us
Quantity
Contact us
PCB Symbol, Footprint & 3D Model
CL2CLEARLENS
CLEAR CL2 LENS JLG LABEL
Contact us
Quantity
Contact us
PCB Symbol, Footprint & 3D Model
1770934003
SUB MIN.PANEL IND.
Contact us
Quantity
Contact us
PCB Symbol, Footprint & 3D Model
8120932
PRESS TO TEST IND.
Contact us
Quantity
Contact us
PCB Symbol, Footprint & 3D Model
8131472
PRESS TO TEST IND.
Contact us
Quantity
Contact us
PCB Symbol, Footprint & 3D Model
0472900400
LARGE PANEL INDICATOR
Contact us
Quantity
Contact us
PCB Symbol, Footprint & 3D Model
095571009201
MIN. PANEL IND.
Contact us
Quantity
Contact us
PCB Symbol, Footprint & 3D Model
2030133203
MIN. DIMMER PANEL IND.
Contact us
Quantity
Contact us
PCB Symbol, Footprint & 3D Model
095930809381
MIN. PANEL IND.
Contact us
Quantity
Contact us
PCB Symbol, Footprint & 3D Model

About  Lenses

Optical lenses are critical devices used to manipulate and focus light in various laboratory and industrial settings. These lenses come in a wide range of types and configurations, each tailored to specific applications and requirements. The primary function of optical lenses is to converge or diverge light rays, enabling precise control over the direction and intensity of light. These lenses can be categorized into various types, such as plano-convex, double-convex, plano-concave, double-concave, and meniscus lenses, each with its unique shape and optical characteristics. When selecting optical lenses, several parameters need to be considered. Firstly, the type of lens should be chosen based on the desired light manipulation, whether it is focusing, collimating, or dispersing light. Focal length determines the distance between the lens and the focal point, influencing the magnification and focusing capabilities of the lens. Wavelength compatibility is another critical factor, ensuring that the lens operates optimally within the desired wavelength range. Optic diameter indicates the size of the lens, determining the maximum beam size that can be accommodated by the lens without significant light loss or distortion. Clear aperture refers to the central portion of the lens that allows light to pass through unobstructed. Optic center thickness and edge thickness determine the overall thickness of the lens, which can impact factors such as weight, ease of handling, and optical aberrations. Optic material plays a crucial role in lens selection, as different materials have varying refractive indices and dispersion properties. Common materials include glass, plastic, and specialized materials like fluorite or calcium fluoride, each with its advantages and limitations. Other factors to consider may include lens coatings, environmental robustness, and aberration correction capabilities. Lens coatings can enhance transmission efficiency, reduce reflections, and protect the lens from environmental factors. Environmental robustness ensures that the lens can withstand variations in temperature, humidity, and other conditions. Aberration correction capabilities indicate the lens's ability to minimize optical distortions and improve image quality. In summary, optical lenses are indispensable devices used to focus and manipulate light in laboratory and industrial settings. These lenses can be selected based on parameters such as lens type, focal length, wavelength compatibility, optic diameter, clear aperture, optic center thickness, optic edge thickness, optic material, lens coatings, environmental robustness, and aberration correction capabilities. Their wide range of applications includes microscopy, imaging systems, laser systems, and more.