SP-Cap CY Series, Aluminum - Polymer Capacitors

Results:
2
Manufacturer
Series
Voltage - Rated
Capacitance
Impedance
Operating Temperature
Applications
Height - Seated (Max)
Surface Mount Land Size
Tolerance
Lead Spacing
Mounting Type
Size / Dimension
Ripple Current @ Low Frequency
Lifetime @ Temp.
ESR (Equivalent Series Resistance)
Ratings
Type
Package / Case
Ripple Current @ High Frequency
Features
Results remaining2
Applied Filters:
SP-Cap CY
Select
ImageProduct DetailPriceAvailabilityECAD ModelMounting TypeFeaturesHeight - Seated (Max)ToleranceApplicationsImpedanceRatingsOperating TemperatureCapacitanceVoltage - RatedPackage / CaseSize / DimensionLead SpacingSeriesTypeESR (Equivalent Series Resistance)Lifetime @ Temp.Ripple Current @ High FrequencySurface Mount Land SizeRipple Current @ Low Frequency
ECG-CY0G471R
CAP ALUM POLY 470UF 20% 4V SMD
Contact us
Quantity
Contact us
PCB Symbol, Footprint & 3D Model
Surface Mount
-
0.118" (3.00mm)
±20%
General Purpose
-
-
-55°C ~ 85°C
470 µF
4 V
2917 (7343 Metric)
0.287" L x 0.169" W (7.30mm x 4.30mm)
-
SP-Cap CY
Polymer
15mOhm
2000 Hrs @ 85°C
5.1 A @ 100 kHz
0.287" L x 0.169" W (7.30mm x 4.30mm)
-
ECG-CY0J331R
CAP ALUM POLY 330UF 20% 6.3V SMD
Contact us
Quantity
Contact us
PCB Symbol, Footprint & 3D Model
Surface Mount
-
0.118" (3.00mm)
±20%
General Purpose
-
-
-55°C ~ 85°C
330 µF
6.3 V
2917 (7343 Metric)
0.287" L x 0.169" W (7.30mm x 4.30mm)
-
SP-Cap CY
Polymer
15mOhm
2000 Hrs @ 85°C
5.1 A @ 100 kHz
0.287" L x 0.169" W (7.30mm x 4.30mm)
-

About  Aluminum - Polymer Capacitors

Aluminum polymer capacitors are a type of polarized capacitor that utilizes an aluminum electrode material with an aluminum oxide dielectric, similar to standard electrolytic capacitors. However, they differ from traditional electrolytic capacitors by employing a conductive polymer material instead of conventional fluid electrolytes. Compared to standard aluminum electrolytic capacitors, polymer capacitors typically demonstrate enhanced electrical performance. This improvement comes at the expense of higher cost and increased sensitivity to the operating environment. Polymer capacitors are known for their ability to offer advantages such as lower equivalent series resistance (ESR), higher ripple current handling capabilities, and longer operational lifespans in certain applications. Despite these performance benefits, the use of a conductive polymer material in these capacitors contributes to their higher manufacturing costs. Additionally, polymer capacitors are more sensitive to factors such as temperature, voltage, and current, requiring careful consideration of operating conditions to ensure optimal performance and reliability. In summary, aluminum polymer capacitors provide improved electrical characteristics compared to standard aluminum electrolytic capacitors, but their higher cost and greater susceptibility to environmental factors necessitate careful evaluation of their suitability for specific applications.